Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Mitochondrion ; 76: 101880, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604459

RESUMO

Plasma membrane large-conductance calcium-activated potassium (BKCa) channels are important players in various physiological processes, including those mediated by epithelia. Like other cell types, human bronchial epithelial (HBE) cells also express BKCa in the inner mitochondrial membrane (mitoBKCa). The genetic relationships between these mitochondrial and plasma membrane channels and the precise role of mitoBKCa in epithelium physiology are still unclear. Here, we tested the hypothesis that the mitoBKCa channel is encoded by the same gene as the plasma membrane BKCa channel in HBE cells. We also examined the impact of channel loss on the basic function of HBE cells, which is to create a tight barrier. For this purpose, we used CRISPR/Cas9 technology in 16HBE14o- cells to disrupt the KCNMA1 gene, which encodes the α-subunit responsible for forming the pore of the plasma membrane BKCa channel. Electrophysiological experiments demonstrated that the disruption of the KCNMA1 gene resulted in the loss of BKCa-type channels in the plasma membrane and mitochondria. We have also shown that HBE ΔαBKCa cells exhibited a significant decrease in transepithelial electrical resistance which indicates a loss of tightness of the barrier created by these cells. We have also observed a decrease in mitochondrial respiration, which indicates a significant impairment of these organelles. In conclusion, our findings indicate that a single gene encodes both populations of the channel in HBE cells. Furthermore, this channel is critical for maintaining the proper function of epithelial cells as a cellular barrier.


Assuntos
Brônquios , Células Epiteliais , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Sistemas CRISPR-Cas , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Membrana Celular/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia
2.
PLoS One ; 17(11): e0276823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445873

RESUMO

Mutations in ATP13A2 cause Kufor-Rakeb Syndrome (KRS), a juvenile form of Parkinson's Disease (PD). The gene product belongs to a diverse family of ion pumps and mediates polyamine influx from lysosomal lumen. While the biochemical and structural studies highlight its unique mechanics, how PD pathology is linked to ATP13A2 function remains unclear. Here we report that localization of overexpressed TOM20, a mitochondrial outer-membrane protein, is significantly altered upon ATP13A2 expression to partially merge with lysosome. Using Halo-fused version of ATP13A2, ATP13A2 was identified in lysosome and autophagosome. Upon ATP13A2 co-expression, overexpressed TOM20 was found not only in mitochondria but also within ATP13A2-containing autolysosome. This modification of TOM20 localization was inhibited by adding 1-methyl-4-phenylpyridinium (MPP+) and not accompanied with mitophagy induction. We suggest that ATP13A2 may participate in the control of overexpressed proteins targeted to mitochondrial outer-membrane.


Assuntos
Autofagossomos , Lisossomos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transtornos Parkinsonianos , ATPases Translocadoras de Prótons , Humanos , Autofagossomos/genética , Autofagossomos/fisiologia , Lisossomos/genética , Lisossomos/fisiologia , Proteínas de Membrana , Mitocôndrias/genética , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Mitofagia/genética , Mitofagia/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/fisiologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/fisiopatologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/fisiologia
3.
Biochem J ; 479(3): 357-384, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147165

RESUMO

Regulated cell death is a vital and dynamic process in multicellular organisms that maintains tissue homeostasis and eliminates potentially dangerous cells. Apoptosis, one of the better-known forms of regulated cell death, is activated when cell-surface death receptors like Fas are engaged by their ligands (the extrinsic pathway) or when BCL-2-family pro-apoptotic proteins cause the permeabilization of the mitochondrial outer membrane (the intrinsic pathway). Both the intrinsic and extrinsic pathways of apoptosis lead to the activation of a family of proteases, the caspases, which are responsible for the final cell demise in the so-called execution phase of apoptosis. In this review, I will first discuss the most common types of regulated cell death on a morphological basis. I will then consider in detail the molecular pathways of intrinsic and extrinsic apoptosis, discussing how they are activated in response to specific stimuli and are sometimes overlapping. In-depth knowledge of the cellular mechanisms of apoptosis is becoming more and more important not only in the field of cellular and molecular biology but also for its translational potential in several pathologies, including neurodegeneration and cancer.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Animais , Apoptossomas/fisiologia , Apoptossomas/ultraestrutura , Autofagia , Caspases/fisiologia , Humanos , Invertebrados/citologia , Ligantes , Lisossomos/fisiologia , Macrófagos/fisiologia , Membranas Mitocondriais/fisiologia , Necrose , Proteínas de Neoplasias/fisiologia , Permeabilidade , Fagocitose , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Receptores de Morte Celular/fisiologia
4.
Life Sci ; 286: 120051, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666039

RESUMO

AIMS: To overcome radioresistant cancer cells, clinically relevant radioresistant (CRR) cells were established. To maintain their radioresistance, CRR cells were exposed 2 Gy/day of X-rays daily (maintenance irradiation: MI). To understand whether the radioresistance induced by X-rays was reversible or irreversible, the difference between CRR cells and those without MI for a year (CRR-NoIR cells) was investigated by the mitochondrial function as an index. MAIN METHODS: Radiation sensitivity was determined by modified high density survival assay. Mitochondrial membrane potential (Δψm) was determined by 5,5',6,6'-tetrachloro-1,1', tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) staining. Rapid Glucose-Galactose assay was performed to determine the shift in their energy metabolism from aerobic glycolysis to oxidative phosphorylation in CRR cells. Involvement of prohibitin-1 (PHB1) in Δψm was evaluated by knockdown of PHB1 gene followed by real-time PCR. KEY FINDINGS: CRR cells that exhibited resistant to 2 Gy/day X-ray lost their radioresistance after more than one year of culture without MI for a year. In addition, CRR cells lost their radioresistance when the mitochondria were activated by galactose. Furthermore, Δψm were increased and PHB1 expression was down-regulated, in the process of losing their radioresistance. SIGNIFICANCE: Our finding reveled that tune regulation of mitochondrial function is implicated in radioresistance phenotype of cancer cells. Moreover, as our findings indicate, though further studies are required to clarify the precise mechanisms underlying cancer cell radioresistance, radioresistant cells induced by irradiation and cancer stem cells that are originally radioresistant should be considered separately, the radioresistance of CRR cells is reversible.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Tolerância a Radiação/fisiologia , Biomarcadores Farmacológicos , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Membranas Mitocondriais/fisiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Tolerância a Radiação/efeitos da radiação , Raios X/efeitos adversos
5.
Cells ; 10(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440901

RESUMO

Adenine nucleotide translocase 1 (ANT1) transfers ATP and ADP over the mitochondrial inner membrane and thus supplies the cell with energy. This study analyzed the role of ANT1 in the immune response of ischemic heart tissue. Ischemic ANT1 overexpressing hearts experienced a shift toward an anti-inflammatory immune response. The shift was characterized by low interleukin (IL)-1ß expression and M1 macrophage infiltration, whereas M2 macrophage infiltration and levels of IL-10, IL-4, and transforming growth factor (TGFß) were increased. The modulated immune response correlated with high mitochondrial integrity, reduced oxidative stress, low left ventricular end-diastolic heart pressure, and a high survival rate. Isolated ANT1-transgenic (ANT1-TG) cardiomyocytes expressed low levels of pro-inflammatory cytokines such as IL-1α, tumor necrosis factor α, and TGFß. However, they showed increased expression and cellular release of anti-inflammatory immunomodulators such as vascular endothelial growth factor. The secretome from ANT1-TG cardiomyocytes initiated stress resistance when applied to ischemic wild-type cardiomyocytes and endothelial cells. It additionally prevented macrophages from expressing pro-inflammatory cytokines. Additionally, ANT1 expression correlated with genes that are related to cytokine and growth factor pathways in hearts of patients with ischemic cardiomyopathy. In conclusion, ANT1-TG cardiomyocytes secrete soluble factors that influence ischemic cardiac cells and initiate an anti-inflammatory immune response in ischemic hearts.


Assuntos
Translocases Mitocondriais de ADP e ATP/metabolismo , Animais , Western Blotting , Cardiomiopatias/metabolismo , Células Cultivadas , Imuno-Histoquímica , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Cardíacas/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Infarto do Miocárdio/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real
6.
Front Endocrinol (Lausanne) ; 12: 609580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679616

RESUMO

Ectopic fat deposition (EFD) in the kidney plays a key role in the development of diabetic nephropathy (DN). Mitochondria-associated ER membranes (MAMs) are structures that connect to the endoplasmic reticulum (ER) and are involved in lipid metabolism. However, there are few studies on MAMs in the field of kidney disease, and the relationship between EFD and MAMs in DN is still unclear. In this study, increased EFD in the kidneys of DN patients was observed, and analysis showed that the degree of EFD was positively correlated with renal damage. Then, the MAMs were quantified by an in situ proximity ligation assay (PLA). The MAMs in the kidneys were found to gradually decrease through the different stages of DN, while the expression of ADRP (a marker of lipid droplets) and tubulointerstitial damage increased. Moreover, correlation analysis showed that the MAMs were negatively correlated with serum lipid levels, the EFD in the kidney and renal damage. Finally, we observed decreased expression of MAM-control proteins (DsbA-L, PACS-2, and MFN-2) in different stages of DN and they were associated with lipid deposition and renal damage. These data showed that the destruction of MAMs in DN might be the cause of EFD and interstitial damage in the kidney.


Assuntos
Tecido Adiposo , Coristoma/prevenção & controle , Nefropatias Diabéticas/patologia , Nefropatias/prevenção & controle , Lipídeos/efeitos adversos , Membranas Mitocondriais/fisiologia , Adulto , Estudos de Casos e Controles , Coristoma/metabolismo , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Retículo Endoplasmático/fisiologia , Feminino , Humanos , Nefropatias/etiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade
7.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562019

RESUMO

Among the phenolic acids tested on the K562 cell line, a model of chronic myeloid leukemia (CML), caffeic acid (CA) was biologically active on sensitive and imatinib (IM)-resistant cells at micro-molar concentration, either in terms of reduction of cell proliferation or triggering of apoptosis. The CA treatment provoked mitochondrial membrane depolarization, genomic DNA fragmentation and phosphatidylserine exposure, hallmarks of apoptosis. Cell cycle analysis following the treatment with comparable cytotoxic concentrations of IM or CA showed marked differences in the distribution profiles. The reduction of cell proliferation by CA administration was associated with increased expression of two cell cycle repressor genes, CDKN1A and CHES1, while IM at a cytotoxic concentration increased the CHES1 but not the CDKN1A expression. In addition, CA treatment affected the proliferation and triggered the apoptosis in IM-resistant cells. Taken together, these data suggested that CA induced the anti-proliferative effect and triggered apoptosis of CML cells by a different mechanism than IM. Finally, the combined administration of IM and CA at suboptimal concentrations evidenced a synergy of action in determining the anti-proliferative effect and triggering apoptosis. The ability of CA to potentiate the anti-leukemic effect of IM highlighted the nutraceutical potential of CA in CML.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Fragmentação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Sinergismo Farmacológico , Fatores de Transcrição Forkhead/biossíntese , Humanos , Membranas Mitocondriais/fisiologia
8.
Cell Calcium ; 94: 102343, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33418313

RESUMO

In the last decades, the communication between the Endoplasmic reticulum (ER) and mitochondria has obtained great attention: mitochondria-associated membranes (MAMs), which represent the contact sites between the two organelles, have indeed emerged as central hub involved in different fundamental cell processes, such as calcium signalling, apoptosis, autophagy and lipid biosynthesis. Consistently, dysregulation of ER-mitochondria crosstalk has been associated with different pathological conditions, ranging from diabetes to cancer and neurodegenerative diseases. In this review, we will try to summarize the current knowledge on MAMs' structure and functions in health and their relevance for human diseases.


Assuntos
Membranas Mitocondriais/fisiologia , Animais , Autofagia , Doença , Retículo Endoplasmático/metabolismo , Saúde , Humanos , Lipídeos/química , Mitocôndrias/metabolismo
9.
Mol Biol Cell ; 32(6): 475-491, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476211

RESUMO

Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered down-regulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed down-regulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one-carbon metabolism is a molecular feature in the biology of Sengers syndrome.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Carbono/metabolismo , Proteínas de Transporte/metabolismo , Técnicas de Cultura de Células , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/fisiologia , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Cultura Primária de Células , Proteômica/métodos
10.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008535

RESUMO

Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.


Assuntos
Consumo de Oxigênio/fisiologia , Envelhecimento/fisiologia , Animais , Comunicação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Respiração Celular/fisiologia , Metabolismo Energético/fisiologia , Coração/fisiologia , Humanos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Ratos , Testes de Função Respiratória/métodos
11.
Cells ; 9(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076484

RESUMO

The large-conductance voltage- and Ca2+-activated K+ channels (BK) are encoded in humans by the Kcnma1 gene. Nevertheless, BK channel isoforms in different locations can exhibit functional heterogeneity mainly due to the alternative splicing during the Kcnma1 gene transcription. Here, we would like to examine the existence of dynamic diversity of BK channels from the inner mitochondrial and cellular membrane from human glioblastoma (U-87 MG). Not only the standard characteristics of the spontaneous switching between the functional states of the channel is discussed, but we put a special emphasis on the presence and strength of correlations within the signal describing the single-channel activity. The considered short- and long-range memory effects are here analyzed as they can be interpreted in terms of the complexity of the switching mechanism between stable conformational states of the channel. We calculate the dependencies of mean dwell-times of (conducting/non-conducting) states on the duration of the previous state, Hurst exponents by the rescaled range R/S method and detrended fluctuation analysis (DFA), and use the multifractal extension of the DFA (MFDFA) for the series describing single-channel activity. The obtained results unraveled statistically significant diversity in gating machinery between the mitochondrial and cellular BK channels.


Assuntos
Glioblastoma/metabolismo , Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Membranas Mitocondriais/fisiologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/fisiologia , Humanos , Cinética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Cadeias de Markov , Potenciais da Membrana , Técnicas de Patch-Clamp , Potássio/metabolismo , Fatores de Tempo
12.
J Gen Physiol ; 152(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32966553

RESUMO

The synthesis of ATP, life's "universal energy currency," is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme's particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins-including ATP synthase-requires such an integrative approach.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Membrana Celular/fisiologia , Adenosina Trifosfatases/fisiologia , Animais , Humanos , Membranas Mitocondriais/fisiologia
13.
Life Sci Alliance ; 3(8)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32636217

RESUMO

The mitochondrial deubiquitylase USP30 negatively regulates the selective autophagy of damaged mitochondria. We present the characterisation of an N-cyano pyrrolidine compound, FT3967385, with high selectivity for USP30. We demonstrate that ubiquitylation of TOM20, a component of the outer mitochondrial membrane import machinery, represents a robust biomarker for both USP30 loss and inhibition. A proteomics analysis, on a SHSY5Y neuroblastoma cell line model, directly compares the effects of genetic loss of USP30 with chemical inhibition. We have thereby identified a subset of ubiquitylation events consequent to mitochondrial depolarisation that are USP30 sensitive. Within responsive elements of the ubiquitylome, several components of the outer mitochondrial membrane transport (TOM) complex are prominent. Thus, our data support a model whereby USP30 can regulate the availability of ubiquitin at the specific site of mitochondrial PINK1 accumulation following membrane depolarisation. USP30 deubiquitylation of TOM complex components dampens the trigger for the Parkin-dependent amplification of mitochondrial ubiquitylation leading to mitophagy. Accordingly, PINK1 generation of phospho-Ser65 ubiquitin proceeds more rapidly in cells either lacking USP30 or subject to USP30 inhibition.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tioléster Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Células-Tronco Neurais/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Tioléster Hidrolases/fisiologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
14.
J Ethnopharmacol ; 263: 113059, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32663591

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shikonin, one of the main active ingredients of Chinese herbal medicine Lithospermum erythrorhizon, has been widely used to treat various disease including virus infection and inflammation in clinical. Its anti-tumor activity has been recorded in "Chinese herbal medicine". Recently, some studies about its anti-glioma effects have been reported. However, little is known about the molecular pharmacological activity of Shikonin in glioma. AIM: This study aimed to systematically uncover and validate the pharmacological mechanism of Shikonin against glioma. MATERIAL AND METHODS: Network pharmacology approach, survival analysis, and Pearson co-expression analysis were performed to uncover and test the pharmacological mechanisms of Shikonin in glioma. Apoptosis assay, Caspase-3 activity assay and immunoblot analysis were practiced to validate the mechanisms. RESULTS: Network pharmacology results suggested, anti-glioma effect of Shikonin by interfering endoplasmic reticulum (ER) stress-mediated tumor apoptosis targeting Caspase-3, and Bax/Bak-induced mitochondrial outer membrane permeabilization (MOMP) triggering cancer cell apoptosis. Survival analysis suggested the association of CASP3 with glioma (P < 0.05). Pearson correlation analysis indicated possible interaction of CASP3 with PERK through positive feedback regulation. Shikonin or in combination with 14G2a induced cell apoptosis in oligodendroglioma Hs683 cells in a dose-dependent manner with at a maximum apoptosis rate of 33%-37.5%, and 73%-77% respectively. Immunoblot analysis showed that Shikonin increased Caspase-3 activity to about 4.29 times, and increased 9 times when it combined with 14G2a. Shikonin increased also the expression levels of the proteins PERK and CHOP by about 4.4 and 5.6 folds, respectively, when it combined with 14G2a. CONCLUSIONS: This study highlights the pharmacological mechanisms of Shikonin in the induction of tumor apoptosis in glioma cells.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioma/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Naftoquinonas/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Humanos , Membranas Mitocondriais/fisiologia
15.
Proc Natl Acad Sci U S A ; 117(12): 6491-6501, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152094

RESUMO

The mitochondria of various tissues from mice, naked mole rats (NMRs), and bats possess two mechanistically similar systems to prevent the generation of mitochondrial reactive oxygen species (mROS): hexokinases I and II and creatine kinase bound to mitochondrial membranes. Both systems operate in a manner such that one of the kinase substrates (mitochondrial ATP) is electrophoretically transported by the ATP/ADP antiporter to the catalytic site of bound hexokinase or bound creatine kinase without ATP dilution in the cytosol. One of the kinase reaction products, ADP, is transported back to the mitochondrial matrix via the antiporter, again through an electrophoretic process without cytosol dilution. The system in question continuously supports H+-ATP synthase with ADP until glucose or creatine is available. Under these conditions, the membrane potential, ∆ψ, is maintained at a lower than maximal level (i.e., mild depolarization of mitochondria). This ∆ψ decrease is sufficient to completely inhibit mROS generation. In 2.5-y-old mice, mild depolarization disappears in the skeletal muscles, diaphragm, heart, spleen, and brain and partially in the lung and kidney. This age-dependent decrease in the levels of bound kinases is not observed in NMRs and bats for many years. As a result, ROS-mediated protein damage, which is substantial during the aging of short-lived mice, is stabilized at low levels during the aging of long-lived NMRs and bats. It is suggested that this mitochondrial mild depolarization is a crucial component of the mitochondrial anti-aging system.


Assuntos
Envelhecimento , Mitocôndrias/fisiologia , Membranas Mitocondriais/fisiologia , Difosfato de Adenosina/metabolismo , Animais , Quirópteros , Creatina/metabolismo , Transporte de Elétrons , Embrião de Mamíferos , Glucose/metabolismo , Hexoquinase/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos-Toupeira , Especificidade de Órgãos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
16.
Mitochondrion ; 51: 30-39, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870826

RESUMO

Optic atrophy type 1 protein (OPA1), a dynamin-related GTPase, that, in addition to mitochondrial fusion, plays an important role in maintaining the structural organization and integrity of the inner mitochondrial membrane (IMM). OPA1 exists in two forms: IMM-bound long-OPA1 (L-OPA1) and soluble short-OPA1 (S-OPA1), a product of L-OPA1 proteolytic cleavage localized in the intermembrane space. In addition to OPA1, the structural and functional integrity of IMM can be regulated by changes in the matrix volume due to the opening/closure of permeability transition pores (PTP). Herein, we investigated the crosstalk between the PTP and OPA1 to clarify whether PTP opening is involved in OPA1-mediated regulation of respiratory chain supercomplexes (RCS) assembly using cardiac mitochondria and cell line. We found that: 1) Proteolytic cleavage of L-OPA1 is stimulated by PTP-induced mitochondrial swelling, 2) OPA1 knockdown reduces PTP-induced mitochondrial swelling but enhances ROS production, 3) OPA1 deficiency impairs the RCS assembly associated with diminished ETC activity and oxidative phosphorylation, 4) OPA1 has no physical interaction with phospholipid scramblase 3 although OPA1 downregulation increases expression of the scramblase. Thus, this study demonstrates that L-OPA1 cleavage depends on the PTP-induced mitochondrial swelling suggesting a regulatory role of the PTP-OPA1 axis in RCS assembly and mitochondrial bioenergetics.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/fisiologia , Dilatação Mitocondrial/fisiologia , Animais , Linhagem Celular Tumoral , Transporte de Elétrons/fisiologia , Metabolismo Energético , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Masculino , Fosforilação Oxidativa , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Rev Mol Cell Biol ; 21(2): 85-100, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636403

RESUMO

Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Animais , Caspases/metabolismo , Citocromos c/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , Transdução de Sinais
18.
Stem Cell Res Ther ; 10(1): 392, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847882

RESUMO

BACKGROUND: Chondrogenesis represents a highly dynamic cellular process that leads to the establishment of various types of cartilage. However, when stress-related injuries occur, a rapid and efficient regeneration of the tissues is necessary to maintain cartilage integrity. Mesenchymal stem cells (MSCs) are known to exhibit high capacity for self-renewal and pluripotency effects, and thus play a pivotal role in the repair and regeneration of damaged cartilage. On the other hand, the influence of certain pathological conditions such as metabolic disorders on MSCs can seriously impair their regenerative properties and thus reduce their therapeutic potential. OBJECTIVES: In this investigation, we attempted to improve and potentiate the in vitro chondrogenic ability of adipose-derived mesenchymal stromal stem cells (ASCs) isolated from horses suffering from metabolic syndrome. METHODS: Cultured cells in chondrogenic-inductive medium supplemented with Cladophora glomerata methanolic extract were experimented for expression of the main genes and microRNAs involved in the differentiation process using RT-PCR, for their morphological changes through confocal and scanning electron microscopy and for their physiological homeostasis. RESULTS: The different added concentrations of C. glomerata extract to the basic chondrogenic inductive culture medium promoted the proliferation of equine metabolic syndrome ASCs (ASCsEMS) and resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II, aggrecan, cartilage oligomeric matrix protein, and Sox9 among others. The results reveal an obvious inhibitory effect of hypertrophy and a strong repression of miR-145-5p, miR-146-3p, and miR-34a and miR-449a largely involved in cartilage degradation. Treated cells additionally exhibited significant reduced apoptosis and oxidative stress, as well as promoted viability and mitochondrial potentiation. CONCLUSION: Chondrogenesis in EqASCsEMS was found to be prominent after chondrogenic induction in conditions containing C. glomerata extract, suggesting that the macroalgae could be considered for the enhancement of ASC cultures and their reparative properties.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Clorófitas/química , Condrogênese/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Síndrome Metabólica/patologia , Extratos Vegetais/farmacologia , Agrecanas/genética , Agrecanas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Clorófitas/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Cavalos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Síndrome Metabólica/metabolismo , MicroRNAs/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/fisiologia , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
19.
Sci Rep ; 9(1): 17138, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748630

RESUMO

A biochemical reaction model clarifies for the first time how cold atmospheric plasmas (CAPs) affect mitochondrial redox homeostasis and energy metabolism. Fundamental mitochondrial functions in pyruvic acid oxidation, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation involving the respiratory chain (RC), adenosine triphosphate/adenosine diphosphate (ATP/ADP) synthesis machinery and reactive oxygen species/reactive nitrogen species (ROS/RNS)-mediated mechanisms are numerically simulated. The effects of CAP irradiation are modelled as 1) the influx of hydrogen peroxide (H[Formula: see text]O[Formula: see text]) to an ROS regulation system and 2) the change in mitochondrial transmembrane potential induced by RNS on membrane permeability. The CAP-induced stress modifies the dynamics of intramitochondrial H[Formula: see text]O[Formula: see text] and superoxide anions, i.e., the rhythm and shape of ROS oscillation are disturbed by H[Formula: see text]O[Formula: see text] infusion. Furthermore, CAPs control the ROS oscillatory behaviour, nicotinamide adenine dinucleotide redox state and ATP/ADP conversion through the reaction mixture over the RC, the TCA cycle and ROS regulation system. CAPs even induce a homeostatic or irreversible state transition in cell metabolism. The present computational model demonstrates that CAPs crucially affect essential mitochondrial functions, which in turn affect redox signalling, metabolic cooporation and cell fate decision of survival or death.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Gases em Plasma/metabolismo , Células 3T3 , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/fisiologia , Simulação por Computador , Células HCT116 , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/fisiologia , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
20.
Aging (Albany NY) ; 11(12): 4107-4124, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31232699

RESUMO

Mitochondria-associated oxidative stress plays a crucial role in Alzheimer's disease (AD). Grape seed proanthocyanidins (GSPs) have been reported to prevent oxidative stress. In this study, we investigated the underlying mechanisms of GSPs in protecting neurons against oxidative injury in an experimental model of sporadic AD. Primary mouse cortical neurons were subjected to streptozotocin (STZ) to mimic neuronal oxidative damage in vitro, and mice were subjected to intracerebroventricular (ICV) injection of STZ as an in vivo sporadic AD model. GSPs not only significantly ameliorated neuron loss and mitochondrial dysfunction in mouse cortical neurons pretreated of STZ, but also reduced cognitive impairments, apoptosis and mitochondrial oxidative stress in the cerebral cortex and hippocampus of sporadic AD mice. Moreover, GSPs increased phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), Akt and glycogen synthase kinase 3ß (GSK-3ß) at its Ser9. Notably, GSPs inhibited STZ-induced mitochondrial permeability transition pore (mPTP) opening via enhancing phosphorylated GSK-3ß (p-GSK-3ß) binds to adenine nucleotide translocator (ANT), thereby reducing the formation of the complex ANT-cyclophilin D (CypD). In conclusion, GSPs ameliorate neuronal oxidative damage and cognitive impairment by inhibiting GSK-3ß-dependent mPTP opening in AD. Our study provides new insights into that GSPs may be a new therapeutic candidate for treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/metabolismo , Extrato de Sementes de Uva/farmacologia , Membranas Mitocondriais/fisiologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proantocianidinas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/efeitos dos fármacos , Cromonas/farmacologia , Glicogênio Sintase Quinase 3 beta/genética , Hipocampo/efeitos dos fármacos , Humanos , Infusões Intraventriculares , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Morfolinas/farmacologia , Permeabilidade , Fosfatidilinositol 3-Quinases , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA